US009213743B2

a2z United States Patent (10) Patent No.: US 9,213,743 B2
Yang et al. 45) Date of Patent: Dec. 15, 2015
(54) MINING FOR STATISTICAL ENUMERATED 8,041,996 B2  10/2011 Rathunde et al.
TYPE 8,060,889 B2 112011 Sim-Tang
8,099,452 B2 1/2012 Chkodrov et al.
. . . 8,463,811 B2* 6/2013 Lakshmanan etal. ........ 707/776
(71) Applicant: Microsoft Corporation, Redmond, WA 2002/0156601 Al 10/2002 Tu ef al.
(US) 2004/0205038 AL* 10/2004 Leeetal. ... 706/47
2007/0140301 Al* 6/2007 Kailash et al. 370/498
(72) Inventors: Jinlin Yang, Redmond, WA (US); 2008/0016412 Al*  1/2008 White etal. ........oooovee. 714/48
Haibin Xie, Redmond, WA (US); Peter 2009/0125550 Al 5/2009 Barga et al.
Ch Bell WA (US 2011/0004935 Al* 12011 Moffieetal. ................ 726/23
apman, bellevue, Us) 2011/0040874 Al* 2/2011 Dugatkinetal. ............ 709/224
. . . . 2012/0072581 Al 3/2012 Tung et al.
(73) Assignee: Microsoft Technology Licensing, LLC, 2013/0091168 Al*  4/2013 Bhaveetal. ............ 707/771
Redmond, WA (US) 2013/0198565 Al* 82013 Mancoridis etal. ............ 714/26
(*) Notice:  Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. “The Event Analysis and Retention Dilemma”, Retrieved at <<http://
www.sensage.com/sites/default/files/sensage_ event__analysis_ di-
(21) Appl. No.: 13/715,300 lemma.pdf>>, Retrieved Date Oct. 9, 2012, pp. 17.
(22) Filed:  Dec. 14, 2012 (Continued)
(65) Prior Publication Data
Primary Examiner — Hares Jami
US 2014/0172887 Al Jun- 19, 2014 (74) Attorney, Agent, or Firm — Ben Tabor; Kate Drakos;
(51) Int.CL Mickey Minhas
GO6F 17/30 (2006.01)
(52) US.CL
CPC ..o, GO6F 17/30516 (2013.01) 7 ABSTRACT
(58) Field of Classification Search Time-based event stream attributes are analyzed to determine
CPC i, GOGF 17/30598; GOGF 17/30601; whether the attributes are of a statistical enumerated type, or,
GOGF 17/30705; GOGF 17/30707; GOGF in other words, whether the attributes comprise statistically
17/3071; GO6F 17/30516 fixed sets of unique values, for instance. The analysis can
USPC e 707/600, 688, 756, 803; 717/ .l 24, 127, involve determining a magnitude of change to a set of unique
o 717/128, 130, 1,3 15709/224 attribute values. In one instance, such a determination can be
See application file for complete search history. performed as a function of a number, or count, of unique
. values. Further, event stream processing can be performed
(56) References Cited P g p

U.S. PATENT DOCUMENTS

7,379,999 Bl *
7,788,109 B2

5/2008 Zhouetal. ......ccocooneen. 709/224
8/2010 Jakobson et al.

START

dynamically, for instance, by partitioning data into time inter-
vals and processing the intervals incrementally.

20 Claims, 9 Drawing Sheets

500
e

VALUES

ACQUIRE EVENT STREAM ATTRIBUTE

510
L~

!

VALUES

IDENTIFY UNIQUE ATTRIBUTE

520
/—

!

DETERMINE A MAGNITUDE OF
CHANGE TO A SET OF UNIQUE VALUES

530
L~

!

ASSIGNING THE ATTRIBUTE TO A CATEGORY AS A
FUNCTION OF THE MAGNITUDE OF CHANGE

540
L~




US 9,213,743 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Copps, Brian, “Monitoring and Diagnostic Guidance for Windows
Azure hosted Applications”, Retrieved at <<http://www.google.co.
in/url?sa=t&rct=j&q=windows+azure+monitoring+and+

diagnostics+service&source=web&cd=5&cad=rja&ved=0CDYQF

JAE&url=http%3A%2F%2Fdownload.microsoft.com%2Fdown
load%2F4%2FC%2FB%2F4CB0167F-B6D9-4B46-8DF1-69CCC
A66FDDE%2F SystemCenterOperationsManagerMonitoringfor

AzureHosted AppsatMicrosoft.pdf&ei=WcizUle3McbNrQel-
314Dhg>>, Jun. 2010, pp. 15.

* cited by examiner



U.S. Patent Dec. 15, 2015 Sheet 1 of 9 US 9,213,743 B2

100
{—

EVENT
STREAMS

i

PRE-PROCESS 110
COMPONENT /_

ATTRIBUTES l

ANALYSIS v 120
COMPONENT

FIXED SET
ATTRIBUTES

Y

POST-PROCESS |,/ 130
COMPONENT

i

VISUALIZATION,
SUGGESTION, ALERT, ETC.

FIG. 1



U.S. Patent Dec. 15, 2015 Sheet 2 of 9 US 9,213,743 B2

EVENT STREAMS

l /— 110
/— 210 /— 220
PARTITION EXTRACTION
COMPONENT COMPONENT

PRE-PROCESSING COMPONENT

i

UNIQUE VALUES PER
ATTRIBUTE PER PARTITION

FIG. 2



U.S. Patent

Dec. 15,

2015

Sheet 3 of 9

US 9,213,743 B2

120
/—

310
=

DATA MODEL
312
| STATE |

MODEL

MANAGEMENT
COMPONENT

Y

330
-

STATE

DETERMINATION

COMPONENT

ANALYSIS COMPONENT

FIG. 3



U.S. Patent Dec. 15, 2015 Sheet 4 of 9 US 9,213,743 B2

NOT ENOUGH
SAMPLES
OR
SATISFYING
THRESHOLD

FIRST SEGMENT
UNKNOWN ENUM

410 420

VIOLATING SATISFYING
THRESHOLD THRESHOLD

NON-ENUM
430

NOT ENOUGH
SAMPLES
OR
VIOLATING
THRESHOLD

FIG. 4



U.S. Patent Dec. 15, 2015 Sheet 5 of 9 US 9,213,743 B2

500
{—

START

ACQUIRE EVENT STREAM ATTRIBUTE |/ >10
VALUES

l

IDENTIFY UNIQUE ATTRIBUTE /_ 520
VALUES

l

DETERMINE A MAGNITUDE OF /_ 530
CHANGE TO A SET OF UNIQUE VALUES

'

ASSIGNING THE ATTRIBUTE TO A CATEGORY AS A |/ 349
FUNCTION OF THE MAGNITUDE OF CHANGE

STOP

FIG. 5



U.S. Patent

Dec. 15, 2015 Sheet 6 of 9 US 9,213,743 B2

600
’/—

START

/— 620
ACQUIRE STREAM ATTRIBUTES

630
NO

CHANGE

DETECTED?

640
NO

CHANGE

SIGNIFICANT?

650

NO CHANGE

ATTRIBUTE
STATE?

YES

660
ALTER STATE /_

FIG. 6



U.S. Patent Dec. 15, 2015 Sheet 7 of 9 US 9,213,743 B2

700
_

PARTITION EVENT STREAM INTO /— 710
INTERVALS BASED ON TIME

'

EXTRACT UNIQUE EVENT ATTRIBUTE /_ 720
VALUES

'

BUILD HISTORICAL DATA MODEL FOR |/~ 73"
AN ATTRIBUTE

ENOUGH
SAMPLES?

THRESHOLD
TEST SATISFIED?

y

750 770
UPDATE MODEL /_ RESET MODEL /_

STOP

FIG. 7



U.S. Patent Dec. 15, 2015 Sheet 8 of 9 US 9,213,743 B2

800
r

/— 810
—»  ASSIGN ATTRIBUTE A FIRST STATE

l

/— 820
—> RECEIVE ATTRIBUTE VALUES

830

ENOUGH SAMPLES?

840

THRESHOLD
SATISFIED?

ASSIGN ATTRIBUTE A SECOND STATE

l e 860

— P RECEIVE ATTRIBUTE VALUES R —

870

NO

ENOUGH SAMPLES?

880

THRESHOLD
SATISFIED?

YES NO

FIG. 8



U.S. Patent Dec. 15, 2015 Sheet 9 of 9 US 9,213,743 B2

960
OPERATING SYSTEM /_

|
|
i
| ,

062 100
| | APPLICATIONS // -
|
| EVENT STREAM
P ——— 964 1 PROCESSING
i MODULES SYSTEM
|
I e, 966
I paTA ¥
|
|

|

|

| ! . 910
|

' |

|

| 920 '

: - v %0

: 940

: PROCESSOR(S) MEMORY

|

|

|

|

: /’\( 950

|

|

M~ 970
| L
L_l__p MASS
STORAGE INTERFACE
COMPONENT(S)
\_’/

R
INPUT  OUTPUT

FIG. 9



US 9,213,743 B2

1
MINING FOR STATISTICAL ENUMERATED
TYPE

BACKGROUND

A time-based event stream is comprised of a series of
events ordered in terms of time. An event is a message includ-
ing one or more attributes. An attribute can be a string or
numeric type, for instance. Software application monitoring
and/or diagnostic tools typically generate time-based event
streams to facilitate application debugging. For example, per-
formance counter data collected for an application can be
supplied as a time-based stream, and each event can include
attributes such as time stamp, application name, counter
name, and counter value. In sum, the event stream provides a
sequence of messages over time that describes the behavior of
an application.

The sheer quantity of events typically comprising a stream
makes locating pertinent information a time consuming pro-
cess. For instance, in a complex distributed system thousands
of'events can be produced. Furthermore, absent knowledge of
a software application, for example originating from a speci-
fication or other documentation, it is difficult to formulate
meaningful queries to explore the events effectively. Event
streams also can be dynamically reconfigured further com-
plicating matters.

SUMMARY

The following presents a simplified summary in order to
provide a basic understanding of some aspects of the dis-
closed subject matter. This summary is not an extensive over-
view. It is not intended to identify key/critical elements or to
delineate the scope of the claimed subject matter. Its sole
purpose is to present some concepts in a simplified form as a
prelude to the more detailed description that is presented later.

Briefly described, the subject disclosure pertains to mining
for statistical enumerated type. Attribute values of a time-
based event stream are analyzed to determine a magnitude of
change associated with the values. Attributes can be assigned
a category or class as a function of the magnitude of change.
For example, an attribute can be assigned to a class associated
with a statistical enumerated type or statistically fixed set of
unique values, if there is little or no change in a set of unique
values comprising the attribute. In accordance with one
aspect, the magnitude of change can be measured as a func-
tion of number, or count, of unique values acquired over time.
In accordance with another aspect, the analysis of attribute
values can differentiate between an occasional change, asso-
ciated with dynamic reconfiguration, for example, and ran-
domness. According to yet another aspect, event streams can
be processed dynamically, for instance by partitioning data
and processing partitions incrementally.

To the accomplishment of the foregoing and related ends,
certain illustrative aspects of the claimed subject matter are
described herein in connection with the following description
and the annexed drawings. These aspects are indicative of
various ways in which the subject matter may be practiced, all
of which are intended to be within the scope of the claimed
subject matter. Other advantages and novel features may
become apparent from the following detailed description
when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a time-based event stream
processing system.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 is a block diagram of a representative pre-process
component.

FIG. 3 is a block diagram of a representative analysis
component.

FIG. 4 illustrates a sample state machine associated with
transitioning attribute state.

FIG. 5 is a flow chart diagram of event-stream attribute
classification.

FIG. 6 is a flow chart diagram of state transition.

FIG. 7 is a flow chart diagram historical data model man-
agement.

FIG. 8 is a flow chart diagram of a method of transitioning
attribute states.

FIG. 9 is a schematic block diagram illustrating a suitable
operating environment for aspects of the subject disclosure.

DETAILED DESCRIPTION

In the context of large amounts of data, such as data
afforded by time-based event streams, it is desirable to enable
data exploration in an effective manner. In furtherance
thereof, data can be divided into categories or classes based
on data characteristics. Subsequent data processing can
exploit such data categorization or classification to aid explo-
ration of data.

One way to categorize data is based on whether the data
comprises a fixed set of unique values. For instance, a time-
based event stream attribute that comprises a fixed set of
unique values can be classified differently from an attribute
that can comprise substantially any value. By way of
example, suppose data is collected from five different perfor-
mance counters of an application. The counter name can be
one of five unique values, which is a fixed set. The counter
value, however, could have a different value each time and is
thus not a fixed set. In other words, the counter name remains
relatively unchanged while the counter value continues to
change.

Details below are generally directed toward mining for
statistical enumerated type. More specifically, event stream
attributes can be analyzed to determine whether they com-
prise a statistically fixed set of unique values. Here, the term
statistically indicates that an attribute need not comprise a
permanently fixed set of values over its life, as is the case with
a conventional enumerated type, but rather the set of values
rarely changes. This addresses real world systems that allow
dynamical reconfiguration of events streams. Hence, a
change can be introduced, but before and after the change, the
set of values is fixed, albeit with different values. In other
words, the set of values stabilizes after a change over time. In
accordance with one embodiment, an attribute of a statistical
enumerated type can be identified as a function of the number
of'unique values observed for the attribute over time. Further,
mining for statistical enumerated type can be performed
dynamically in substantially real time, for instance by parti-
tioning data into fixed time intervals and processing data
incrementally.

Various aspects of the subject disclosure are now described
in more detail with reference to the annexed drawings,
wherein like numerals refer to like or corresponding elements
throughout. It should be understood, however, that the draw-
ings and detailed description relating thereto are not intended
to limit the claimed subject matter to the particular form
disclosed. Rather, the intention is to cover all modifications,
equivalents, and alternatives falling within the spirit and
scope of the claimed subject matter.

Referring initially to FIG. 1, a time-based event stream
processing system 100 is illustrated. The system 100 includes



US 9,213,743 B2

3

pre-process component 110, analysis component 120, and
post-process component 130. The pre-process component
110 accepts time-based event streams as input. A time-based
event stream (also referred herein as simply an event stream)
is comprised of events that are ordered in terms of time. An
event is a message that includes one or more attributes,
wherein an attribute can be a string or numeric type, for
example. After processing, the pre-process component 110
outputs event stream attributes.

The analysis component 120 analyzes the attributes in an
attempt to discover attributes that comprise a statistically
fixed set of unique values. Stated differently, the analysis
component 120 is configured to mine attributes for statistical
enumerated types. As a result, attributes can be classified as
an enumerated type (a.k.a. Enum) or fixed set of unique
values, or non-enumerated type (a.k.a. Non-Enum) or non-
fixed set of unique values.

The terms statistically and statistical indicate that,
although it can, an attribute need not comprise a permanently
fixed set of unique values over its life, as is the case with a
conventional enumerated type. Rather the set of values can
change on occasion. This addresses real world systems that
allow dynamical reconfiguration of events streams. Here, a
change can be introduced, but before and after the change, the
set of values is fixed, albeit with different values By way of
example, consider an scenario in which five performance
counters are initially monitored, and subsequently during
reconfiguration one counter is removed and two new perfor-
mance counters added instead. Hence, the counter name
attribute of an event stream does not comprise an absolutely
fixed set of unique values. However, the time before and after
the configuration change, the number of unique counter
names is fixed. This is referred to as being statistically fixed or
of a statistical enumerated type.

When analyzing an attribute the analysis component 120
can seek to determine a magnitude of change associated with
a set of unique values. Attributes can subsequently be
assigned a category or class as a function of the magnitude of
change. By way of example, and not limitation, if there is a
small change, or no change at all, in values comprising an
attribute as compared to a predetermined change threshold,
the attribute can be classified as fixed. Otherwise, if there is a
large change in attribute values with respect to a predeter-
mined change threshold, the attributed can be classified as
non-fixed or variable. As will be described later herein, in one
embodiment, the number, or count, of unique values of an
attribute can be used as a measure of the magnitude of change
over time.

The post-process component 130 can be configured to
execute various techniques to aid data exploration based onan
attribute category or class. For example, the post-process
component 130 can provide query suggestions. Additionally
or alternatively, the post-process component 130 can visual-
ize data based on whether or not an attribute is a statistically
fixed set of values, for instance.

FIG. 2 depicts a representative pre-process component 110
in further detail. The pre-process component comprises par-
tition component 210 and extraction component 220. The
representative pre-process component 110 can accept event
streams as input and output unique values per attribute per
partition in accordance with one embodiment.

The partition component 210 is configured to partition an
event stream into intervals as a function of time. For instance,
an event stream can be partitioned based on time stamp into
chunks or segments that correspond to “N”-minute intervals.
The default value of “N” could be five. However, “N” could
be adjusted to a larger value if the event stream is populated

10

15

20

25

30

35

40

45

50

55

60

65

4

less frequently. For example, if an event stream includes data
with time stamp on an hour boundary (data provided every
sixty minutes), “N” can be set to sixty.

The extraction component 220 is configured to extract
unique values comprising an attribute. In one embodiment,
given an event segment for an “N”-minute interval, the
extraction component 220 can execute a “Distinct” operation
on each attribute to identify its unique values during the
“N”-minute interval. The unique values of an attribute for a
segment are also referred to herein as a sample. By way of
example, if for counter name values “A, B, C, A, B, C” are
observed during an interval, there are six values but the
extraction component 220 can identify three as unique,
namely “A,” “B,” and “C.” In other words, the extraction
component 220 can identity distinct values and ignore dupli-
cates.

FIG. 3 illustrates a representative analysis component 120.
As previously mentioned, the analysis component 120 can be
configured to mine event streams for attributes that comprise
a statistically fixed set of values or are of statistical enumer-
ated type. The analysis component 120 can employ a histori-
cal data model 310 comprising state field 312, value field 314,
and count field 316 for each attribute. The state field 312
represents the current state, or assigned category or class, of
an attribute. In one embodiment, for instance, there could be
three states, “Unknown,” “Enum,” and “Non-Enum.” The
value field 314 records past values (PV) of unique values of an
attribute observed thus far. The number of unique values of an
attribute observed thus far is referred to as count (C). The
count field 316 captures past counts (PC) comprising counts
at each observed sample point.

Model management component 320 can be configured to
build and maintain the historical data model 310. For
instance, the model management component 320 can com-
pute and populate fields with values for each interval. By way
of example, and not limitation, suppose a sample at interval
“1” is observed comprising attribute values “V(i).” The model
management component 320 can compute past values “PV
(1)” as “PV(i)=Union(PV(i-1), V(i),” where “Union” is a
conventional set union operation. Further, the model manage-
ment component 320 can compute the past count in accor-
dance with the following equations: “PC(1)=C(0), C(1), . . .
C@1)=PC(i-1), Count(PV(1)),” where “C(1)=Count(PV(i))”
and “Count” returns the number of elements in a set. In
accordance with one embodiment, the model management
component 320 can be configured to update or reset the his-
torical data model 310, as will be described further hereinaf-
ter.

State determination component 330 is configured to iden-
tify the state of an attribute as a function of at least the past
state and the number of unique values per interval for an
attribute. The number of unique values can be employed as a
measure of uniqueness over time. In accordance with one
embodiment, a threshold test can be utilized to determine
whether an attribute comprises a statistically fixed set of
unique values or, in other words, is a statistical enumerated
type. Given a sample for an interval “i,” the historical data
model 310, past value “PV(i),” and past count “PC(i)” can be
computed as follows:

PV(i)=Union(PV(i-1),V (i)

PC()=PC(i-1),Count(PV(i))

The state determination component 330 can compute
mean, mean standard deviation, and percent with respect to



US 9,213,743 B2

5

the number of unique values as follows, supposing “PC(m)”
includes “m” counts, “X,;, X, ... X,

_—

mean=(X+Xo+. .. +X,,)/m

mean standard deviation=SQRT(((X,-mean*+(X,~
mean)’+ . .. +(X,,—mean)?)/m)

percent=mean standard deviation/mean

Mean standard deviation captures the variance in the past
counts, whereas percent normalizes the variance according to
the mean of the past counts.

In accordance with one embodiment, the threshold test can
be expresses as the following compound Boolean expression:

mean standard deviation<=K||percent<L

The test can be passed if the expression is true and failed
otherwise, where “K” and “L” are two parameters that can be
tuned. It has been determined by experiment that setting “K”
to “10.0” and “L” to “0.05” performs reasonably well for
monitoring or diagnostic event streams. Of course, other set-
tings may work equally well or better in this domain or other
domains.

The Boolean expression captures both the absolute vari-
ance (the first predicate: “mean standard deviation<=K”) and
the relative variance in the counts (the second predicate:
“percent<[.”). When both variances are big, an attribute can
be declared a “Non-Enum” or non-fixed set of unique values.
Considering the absolute variance instead of just the relative
variance is significant because the absolute variance in past
counts could be quite small even though the relative variance
is big. For example, suppose the past counts are “1, 1, 1,2, 2,
2.’ the mean is “1.5,” mean standard deviation is “0.5,” per-
cent is “0.33.” Here, if “percent<L.” with .=0.05 is the lone
tested, the data would fail the test. However, it is clear that the
data is an “Enum” or comprises a fixed set of unique values,
because the count remains at “2”” Note also that the threshold
test provides the ability to differentiate occasional change
from randomness and therefore enables handling of dynamic
configuration changes.

The model management component 320 is configured to
update as well as reset the value field 314 and the count field
316 of the historical data model 310. Given the historical data
model 310 of an attribute and a new sample (e.g., unique
values of the attribute for an “N”-minute interval), the model
management component 320 can first determine whether the
number of samples is lower than a predetermined minimum.
By way of example, and not limitation, the minimum number
of'samples can be set to “24,” such that if “N” were set to “5,”
at least two hours of data would be necessitated by the con-
dition. If the number of samples is below the minimum, the
model management component 320 can update the model as
follows:

PV(i)=Union(PV(i-1),V (i)

PC({H)=PC(i-1),Count(PV(i))

If the sample count is more than the minimum, the model
management component 320 can solicit results of a threshold
test performed by the state determination component 330. If
the data passes the threshold test, the model management
component 320 can update the value field 314 and the count
field 316 as described above. If the data fails the threshold
test, the model management component 320 can reset the
value field 314 and count field 316 as follows:

PYH={}
PCAH={ }

15

30

40

45

55

65

6

Turning attention to FIG. 4, a sample state machine is
illustrated that describes functionality that can be employed
by the state determination component 330. Before the first
time an attribute is processed, that attribute’s state is
“Unknown” 410. The first time an attribute is processed
(when a first segment of data is received), the attribute’s state
can be set to “Enum” 420 indicative of a statistical enumer-
ated type or statistically fixed set of unique values. In other
words, attributes can start or default to an “Enum” 420. An
attribute’s state can remain as “Enum” 420 as long as there are
not enough samples to satisfy a predetermined minimum
threshold or the previously described threshold test is satis-
fied. If the data fails the previously described threshold test,
the attribute’s state can be transitioned to “Non-Enum” 430
indicating that the attribute is a non-enumerated type or non-
fixed set of unique values. Upon transitioning, from “Enum”
420 to “Non-Enum” 430, the model management component
320 can reset the value field 314 and count field 316 as
previously described. This provides an opportunity for an
attribute whose number of unique values stabilizes after a
change. The attribute’s state remains as “Non-Enum” 430 if
there are fewer samples than a predetermined minimum
threshold (due to the reset) or the data violates the threshold
test. If the data does pass the threshold test, the state can
transition back to “Enum” 420 and the process continues. The
state determination component 330 can instruct the model
management component 320 to update the state field 312
upon a transition or perform the update operation itself

Returning to FIG. 1, the post-process component 130 can
be configured to aid data exploration based on an assigned
attribute category or class in a variety of ways. In a first
embodiment, for example, the post-process component can
be configured to visually distinguish on a user interface
attributes that comprise a statistically fixed number of unique
values and those that do not. In a second embodiment, the
post-process component 130 can be configured to provide
suggestions to facilitate query construction. For instance,
those attributes that are of a statistical enumerated type or, in
other words, comprise a statistically fixed set of unique values
can be provided as suggestions. This is useful in that currently
absent specific knowledge originating from documentation,
for example, it is difficult to formulate meaningful queries to
explore the events effectively. Event streams also can be
dynamically reconfigured further complicating matters. In
yet another embodiment, the post-process component 130
can implement an alert functionality that could employ sta-
tistically enumerated types in detecting problems. For
instance, if in the past data was rarely changing and suddenly
there is a change, this could indicate that something is wrong.

In accordance with embodiment, the system 100 can oper-
ate over event streams generated by software application
monitoring and/or diagnostic tools to facilitate application
debugging. However, the claimed subject matter is not so
limited, as aspects of this disclosure are applicable to data
provided in order of time.

Further, the system 100 or portions thereof can operate
dynamically in substantially real time. For example, the
analysis component 120 can operate on the fly to identify
attributes that are of a statistical enumerated type. Of course,
the claimed subject matter is not so limited. In fact, aspects of
this disclosure can be applied to a fixed set of data.

The aforementioned systems, architectures, environments,
and the like have been described with respect to interaction
between several components. It should be appreciated that
such systems and components can include those components
or sub-components specified therein, some of the specified
components or sub-components, and/or additional compo-



US 9,213,743 B2

7

nents. Sub-components could also be implemented as com-
ponents communicatively coupled to other components
rather than included within parent components. Further yet,
one or more components and/or sub-components may be
combined into a single component to provide aggregate func-
tionality. Communication between systems, components
and/or sub-components can be accomplished in accordance
with either a push and/or pull model. The components may
also interact with one or more other components not specifi-
cally described herein for the sake of brevity, but known by
those of skill in the art.

Furthermore, various portions of the disclosed systems
above and methods below can include or employ of artificial
intelligence, machine learning, or knowledge or rule-based
components, sub-components, processes, means, methodolo-
gies, or mechanisms (e.g., support vector machines, neural
networks, expert systems, Bayesian belief networks, fuzzy
logic, data fusion engines, classifiers . . . ). Such components,
inter alia, can automate certain mechanisms or processes
performed thereby to make portions of the systems and meth-
ods more adaptive as well as efficient and intelligent. By way
of example, and not limitation, the analysis component 120
can employ such mechanisms to determine or infer that an
attribute is or is not of a statistical enumerated type or does or
does not comprise a statistically fixed set of unique values.

In view of the exemplary systems described supra, meth-
odologies that may be implemented in accordance with the
disclosed subject matter will be better appreciated with ref-
erence to the flow charts of FIGS. 5-8. While for purposes of
simplicity of explanation, the methodologies are shown and
described as a series of blocks, it is to be understood and
appreciated that the claimed subject matter is not limited by
the order of the blocks, as some blocks may occur in different
orders and/or concurrently with other blocks from what is
depicted and described herein. Moreover, not all illustrated
blocks may be required to implement the methods described
hereinafter.

Referring to FIG. 5, a method 500 of event-stream attribute
classification is illustrated. At reference numeral 510, event-
stream attribute values are received, retrieved, or otherwise
obtained or acquired. In one instance, the values can be
obtained with respect to partitions corresponding to a time
interval. At numeral 520, unique attribute values are identi-
fied. In other words, duplicate attribute values are removed
leaving solely distinct values. At 530, a magnitude of change
is determined for a set of unique values of an attribute. For
example, it may be determined that the values are consistent
or fixed, alternatively, it may be determined that the values are
inconsistent or random. In accordance with one embodiment,
the magnitude can be determined as a function of a number of
unique values. At reference numeral 540, the attribute is
assigned to a category or class as a function of the determined
magnitude of change. Continuing with the above example,
the attribute can be assigned one of two categories based on
whether the magnitude of change is determined to be consis-
tent or inconsistent. Of course, the magnitude of change need
not be a Boolean choice between two values but rather it can
be fuzzy such that there is a range of consistent or inconsis-
tent, in which case there can be a plurality of categories or
classes for which such data can be assigned.

FIG. 6 depicts a method 600 of state transition. At reference
numeral 610, a determination is made concerning whether to
terminate the method. If the method is to be terminated
(“YES”), the method is terminated. Otherwise (“NO”), the
method continues at 620, where event stream attributes are
acquired. At numeral 630, a determination is made concern-
ing whether a change is detected. A change can correspond to

20

25

30

40

45

60

8

avariation in a set of unique values associated with a particu-
lar attribute. If no change is detected (“NO”), the method
continues at 610. If a change is detected (“YES”), a determi-
nation is made as to whether the change is significant. A test
can be established to make such a determination for example
based on a number of unique values associated with the
attribute. If the change is insignificant (“NO”), the method
continues at 610. If the change is deemed significant
(“YES”), the method proceeds to 650 where a determination
is made as to whether to alter the state of an attribute. The
determination can be based on the current state of the
attribute. For example, if the attribute’s current state corre-
sponds to a fixed set of unique values or an enumerated type,
a decision can be made in light of a significant change to
transition the current state to a different state associated with
a non-enumerated type for example. However, if the
attribute’s state is currently associated with a non-enumer-
ated type, the state need not be changed. If the state is not to
be changed (“NO”), the method continues at 610. If the state
is to be changed (“YES”), the state is altered at reference
numeral 660, prior to continuing at numeral 610.

FIG. 7 illustrates a method 700 of managing an historical
data model associated with an attribute. At numeral 710, an
event stream is partitioned into intervals based on time, such
as “N”-minute intervals. At reference 720, unique event-
stream attribute values are extracted. Stated differently, dis-
tinct values are identified and duplicate values are ignored. At
reference numeral 730, an historical data model is built for an
attribute. Such a data model can include a plurality of fields
for recording, for instance, attribute state (e.g., Unknown,
Enum, Non-Enum), unique attribute values, counts of the
number of unique values identified per interval. At numeral
740, a determination is made as to whether enough samples
have been acquired. Here, samples can correspond to inter-
vals of attribute values. If not enough samples have been
collected (“NO”), the data model can be updated with unique
values and a count thereof associated with a current interval.
If enough samples have been collected (“YES”), the method
proceeds to 760 where a determination is made concerning
whether a threshold test has been satisfied. The threshold test
can compare absolute variance and/or relative variance of
attribute counts over intervals against one or more config-
urable parameters to determine whether the attribute com-
prises statistically fixed unique values or, in other words, the
attribute is a statistical enumerated type. If the threshold test
is satisfied (“YES”), the historical model can be updated with
current interval data at 750. However, if the threshold test is
not satisfied (“NO”), the method continues at 770 where it
resets the model prior to terminating. Resetting the model can
correspond to clearing attribute values and counts, for
example.

FIG. 8 depicts a method 800 of transitioning attribute
states. At reference numeral 810, an attribute is assigned to a
first state. For example, the first state can correspond to an
enumerated type. At 820, attribute values are received or
retrieved, for example associated with a predetermined time
interval. A determination is made at numeral 830 concerning
whether enough samples have been observed, for instance
with respect to a specified minimum. Here, samples can cor-
respond to intervals of attribute values. If not enough samples
have been acquired (“NO”), the method continues at 820
where it receives addition attribute values. If enough samples
have been acquired (“YES”), the method continues at 840,
where a determination is made as to whether attribute data
satisfies a threshold test. The threshold test can compare
absolute variance and/or relative variance of attribute counts
over intervals against one or more configurable parameters to



US 9,213,743 B2

9

determine whether the attribute comprises statistically fixed
unique values. If the threshold test is satisfied (“YES”), the
method continues at 820. If the threshold test is not satisfied
(“NO”), the method proceeds to 850, where the attribute is
assigned a second state. For example, the state can correspond
to a non-enumerated type. At reference numeral 860, attribute
values are again received or retrieved, for instance, associated
with a predetermined time interval. At numeral 870, a deter-
mination is made as to whether enough samples, or intervals
of data, have been acquired with respect to a predetermined
minimum. If enough samples are not acquired (“NO”), the
method continues to acquire attribute values at 860. If enough
samples are acquired (“YES”), the method continues at 880
where a determination is made as to whether a threshold test
is satisfied. The threshold test can be the same test with
respect to numeral 840. At 880, if the threshold test is not
satisfied (“NO”), the method continues at 860 where it
receives attribute values. If the threshold test is satisfied at
880, the method proceeds to 810 where the attribute is
assigned the first state. For example, the attribute can transi-
tion from a non-enumerated type to an enumerated type.

The word “exemplary” or various forms thereof are used
herein to mean serving as an example, instance, or illustra-
tion. Any aspect or design described herein as “exemplary” is
not necessarily to be construed as preferred or advantageous
over other aspects or designs. Furthermore, examples are
provided solely for purposes of clarity and understanding and
are not meant to limit or restrict the claimed subject matter or
relevant portions of this disclosure in any manner. It is to be
appreciated a myriad of additional or alternate examples of
varying scope could have been presented, but have been omit-
ted for purposes of brevity.

As used herein, the terms “component,” and “system,” as
well as various forms thereof (e.g., components, systems,
sub-systems . . . ) are intended to refer to a computer-related
entity, either hardware, a combination of hardware and soft-
ware, software, or software in execution. For example, a
component may be, but is not limited to being, a process
running on a processor, a processor, an object, an instance, an
executable, a thread of execution, a program, and/or a com-
puter. By way of illustration, both an application running on
a computer and the computer can be a component. One or
more components may reside within a process and/or thread
of execution and a component may be localized on one com-
puter and/or distributed between two or more computers.

The conjunction “or” as used in this description and
appended claims is intended to mean an inclusive “or” rather
than an exclusive “or,” unless otherwise specified or clear
from context. In other words, ““X’or “Y’” is intended to mean
any inclusive permutations of “X” and “Y.”” For example, if
““A” employs ‘X,”” ““A employs Y, or ““A” employs both
‘X’ and °Y,”” then ““A’ employs ‘X’ or “Y’” is satisfied under
any of the foregoing instances.

As used herein, the term “inference” or “infer” refers gen-
erally to the process of reasoning about or inferring states of
the system, environment, and/or user from a set of observa-
tions as captured via events and/or data. Inference can be
employed to identify a specific context or action, or can
generate a probability distribution over states, for example.
The inference can be probabilistic—that is, the computation
of a probability distribution over states of interest based on a
consideration of data and events. Inference can also refer to
techniques employed for composing higher-level events from
a set of events and/or data. Such inference results in the
construction of new events or actions from a set of observed
events and/or stored event data, whether or not the events are
correlated in close temporal proximity, and whether the

20

30

35

40

45

10

events and data come from one or several event and data
sources. Various classification schemes and/or systems (e.g.,
support vector machines, neural networks, expert systems,
Bayesian belief networks, fuzzy logic, data fusion
engines . . . ) can be employed in connection with performing
automatic and/or inferred action in connection with the
claimed subject matter.

Furthermore, to the extent that the terms “includes,” “con-
tains,” “has,” “having” or variations in form thereof are used
in either the detailed description or the claims, such terms are
intended to be inclusive in a manner similar to the term
“comprising” as “comprising” is interpreted when employed
as a transitional word in a claim.

In order to provide a context for the claimed subject matter,
FIG. 9 as well as the following discussion are intended to
provide a brief, general description of a suitable environment
in which various aspects of the subject matter can be imple-
mented. The suitable environment, however, is only an
example and is not intended to suggest any limitation as to
scope of use or functionality.

While the above disclosed system and methods can be
described in the general context of computer-executable
instructions of a program that runs on one or more computers,
those skilled in the art will recognize that aspects can also be
implemented in combination with other program modules or
the like. Generally, program modules include routines, pro-
grams, components, data structures, among other things that
perform particular tasks and/or implement particular abstract
data types. Moreover, those skilled in the art will appreciate
that the above systems and methods can be practiced with
various computer system configurations, including single-
processor, multi-processor or multi-core processor computer
systems, mini-computing devices, mainframe computers, as
well as personal computers, hand-held computing devices
(e.g., personal digital assistant (PDA), phone, watch . . . ),
microprocessor-based or programmable consumer or indus-
trial electronics, and the like. Aspects can also be practiced in
distributed computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. However, some, if not all aspects
of'the claimed subject matter can be practiced on stand-alone
computers. In a distributed computing environment, program
modules may be located in one or both of local and remote
memory storage devices.

With reference to FIG. 9, illustrated is an example general-
purpose computer 910 or computing device (e.g., desktop,
laptop, tablet, server, hand-held, programmable consumer or
industrial electronics, set-top box, game system, compute
node . . . ). The computer 910 includes one or more
processor(s) 920, memory 930, system bus 940, mass storage
950, and one or more interface components 970. The system
bus 940 communicatively couples at least the above system
components. However, it is to be appreciated that in its sim-
plest form the computer 910 can include one or more proces-
sors 920 coupled to memory 930 that execute various com-
puter executable actions, instructions, and or components
stored in memory 930.

The processor(s) 920 can be implemented with a general
purpose processor, a digital signal processor (DSP), an appli-
cation specific integrated circuit (ASIC), a field program-
mable gate array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform
the functions described herein. A general-purpose processor
may be a microprocessor, but in the alternative, the processor
may be any processor, controller, microcontroller, or state
machine. The processor(s) 920 may also be implemented as a



US 9,213,743 B2

11

combination of computing devices, for example a combina-
tion of a DSP and a microprocessor, a plurality of micropro-
cessors, multi-core processors, one or More Microprocessors
in conjunction with a DSP core, or any other such configura-
tion.

The computer 910 can include or otherwise interact with a
variety of computer-readable media to facilitate control of the
computer 910 to implement one or more aspects of the
claimed subject matter. The computer-readable media can be
any available media that can be accessed by the computer 910
and includes volatile and nonvolatile media, and removable
and non-removable media. Computer-readable media can
comprise computer storage media and communication
media.

Computer storage media includes volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information such as
computer-readable instructions, data structures, program
modules, or other data. Computer storage media includes
memory devices (e.g., random access memory (RAM), read-
only memory (ROM), electrically erasable programmable
read-only memory (EEPROM) . . . ), magnetic storage
devices (e.g., hard disk, floppy disk, cassettes, tape . . . ),
optical disks (e.g., compact disk (CD), digital versatile disk
(DVD) . . .), and solid state devices (e.g., solid state drive
(SSD), flash memory drive (e.g., card, stick, key
drive...)...), or any other like mediums which can be used
to store the desired information and which can be accessed by
the computer 910. Furthermore, computer storage media
excludes modulated data signals.

Communication media typically embodies computer-read-
able instructions, data structures, program modules, or other
data in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such a
manner as to encode information in the signal. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired connec-
tion, and wireless media such as acoustic, RF, infrared and
other wireless media. Combinations of any of the above
should also be included within the scope of computer-read-
able media.

Memory 930 and mass storage 950 are examples of com-
puter-readable storage media. Depending on the exact con-
figuration and type of computing device, memory 930 may be
volatile (e.g., RAM), non-volatile (e.g., ROM, flash
memory . . . ) or some combination of the two. By way of
example, the basic input/output system (BIOS), including
basic routines to transfer information between elements
within the computer 910, such as during start-up, can be
stored in nonvolatile memory, while volatile memory can act
as external cache memory to facilitate processing by the
processor(s) 920, among other things.

Mass storage 950 includes removable/non-removable,
volatile/non-volatile computer storage media for storage of
large amounts of data relative to the memory 930. For
example, mass storage 950 includes, but is not limited to, one
or more devices such as a magnetic or optical disk drive,
floppy disk drive, flash memory, solid-state drive, or memory
stick.

Memory 930 and mass storage 950 can include, or have
stored therein, operating system 960, one or more applica-
tions 962, one or more program modules 964, and data 966.
The operating system 960 acts to control and allocate
resources of the computer 910. Applications 962 include one
or both of system and application software and can exploit

30

40

45

65

12

management of resources by the operating system 960
through program modules 964 and data 966 stored in memory
930 and/or mass storage 950 to perform one or more actions.
Accordingly, applications 962 can turn a general-purpose
computer 910 into a specialized machine in accordance with
the logic provided thereby.

All or portions of the claimed subject matter can be imple-
mented using standard programming and/or engineering
techniques to produce software, firmware, hardware, or any
combination thereof to control a computer to realize the dis-
closed functionality. By way of example and not limitation,
the event stream processing system 100, or portions thereof,
can be, or form part, of an application 962, and include one or
more modules 964 and data 966 stored in memory and/or
mass storage 950 whose functionality can be realized when
executed by one or more processor(s) 920.

In accordance with one particular embodiment, the proces-
sor(s) 920 can correspond to a system on a chip (SOC) or like
architecture including, or in other words integrating, both
hardware and software on a single integrated circuit substrate.
Here, the processor(s) 920 can include one or more proces-
sors as well as memory at least similar to processor(s) 920 and
memory 930, among other things. Conventional processors
include a minimal amount of hardware and software and rely
extensively on external hardware and software. By contrast,
an SOC implementation of processor is more powerful, as it
embeds hardware and software therein that enable particular
functionality with minimal or no reliance on external hard-
ware and software. For example, the event stream processing
system 100 and/or associated functionality can be embedded
within hardware in a SOC architecture.

The computer 910 also includes one or more interface
components 970 that are communicatively coupled to the
system bus 940 and facilitate interaction with the computer
910. By way of example, the interface component 970 can be
aport (e.g., serial, parallel, PCMCIA, USB, FireWire . . . ) or
an interface card (e.g., sound, video . . . ) or the like. In one
example implementation, the interface component 970 can be
embodied as a user input/output interface to enable a user to
enter commands and information into the computer 910, for
instance by way of one or more gestures or voice input,
through one or more input devices (e.g., pointing device such
as a mouse, trackball, stylus, touch pad, keyboard, micro-
phone, joystick, game pad, satellite dish, scanner, camera,
other computer . . . ). In another example implementation, the
interface component 970 can be embodied as an output
peripheral interface to supply output to displays (e.g., CRT,
LCD,plasma...), speakers, printers, and/or other computers,
among other things. Still further yet, the interface component
970 can be embodied as a network interface to enable com-
munication with other computing devices (not shown), such
as over a wired or wireless communications link.

What has been described above includes examples of
aspects of the claimed subject matter. It is, of course, not
possible to describe every conceivable combination of com-
ponents or methodologies for purposes of describing the
claimed subject matter, but one of ordinary skill in the art may
recognize that many further combinations and permutations
of'the disclosed subject matter are possible. Accordingly, the
disclosed subject matter is intended to embrace all such alter-
ations, modifications, and variations that fall within the spirit
and scope of the appended claims.

What is claimed is:

1. A computer-implemented method, comprising:

employing at least one processor configured to execute

computer-executable instructions stored in memory to
perform the following acts:



US 9,213,743 B2

13

identifying one or more unique values that comprise a
time-based event stream attribute, wherein the one or
more unique values are non-duplicative;

determining a count of the unique values; and

assigning the attribute to one of a plurality of categories
based on variance in the count and one or more past
counts of unique values.

2. The method of claim 1, assigning the attribute to one of

a first category corresponding to a fixed set of unique values
or a second category corresponding to an unfixed set of
unique values.

3. The method of claim 2 further comprises presenting, on
a display, an attribute assigned to the first category corre-
sponding to the fixed set of unique values.

4. The method of claim 2 further comprising producing an
alert after the attribute is reassigned from the first category
corresponding to the fixed set of unique values to the second
category corresponding to the unfixed set of unique values.

5. The method of claim 1 further comprises assigning the
attribute based on absolute and relative variance.

6. The method of claim 1 further comprises partitioning the
event stream based on a predetermined time interval.

7. The method of claim 6 further comprises identifying
unique values for the attribute within a partition.

8. The method of claim 7 further comprises recording
historical data and attribute category.

9. The method of claim 8 further comprises resetting the
historical data upon a change in category assignment.

10. A system, comprising:

aprocessor coupled to a memory, the processor configured
to execute the following computer-executable compo-
nents stored in the memory:

a first component configured to identify a count of unique
values from a time-based event stream attribute, wherein
the unique values are non-duplicative; and

a second component configured to determine if the
attribute comprises a statistically fixed set of values,
which change rarely if at all, based on variance in the
count and one or more past counts of unique values.

11. The system of claim 10, the second component is
further configured to determine if the attribute comprises a
statistically fixed set of values as a function of a mean stan-
dard deviation of the count and the one or more past counts of
unique values.

10

15

20

25

30

35

40

14

12. The system of claim 10, the second component is
further configured to determine if the attribute comprises a
statistically fixed set of values as a function of a percent
computed as mean standard deviation of the count and the one
or more past counts of unique values divided by mean of the
count and the one or more past counts of unique values.

13. The system of claim 10 further comprises a third com-
ponent configured to partition the event stream into segments
that correspond to a predetermined time interval.

14. The system of claim 10 further comprises a third com-
ponent configured to extract one or more unique values of the
attribute.

15. The system of claim 10 further comprises a third com-
ponent configured to manage a historical data model com-
prising unique attribute values, the count of unique values,
and attribute state.

16. The system of claim 15 further comprises a fourth
component configured to determine current attribute state
based in part on the attribute state and the count of unique
values.

17. The system of claim 10, the time-based event stream is
a monitoring or diagnostic event stream.

18. The system of claim 10 further comprises a third com-
ponent configured to present, on a display, an attribute that
comprises a statistically fixed set of values.

19. A computer-readable storage medium having instruc-
tions stored thereon that enable at least one processor to
perform a method upon execution of the instructions, the
method comprising:

partitioning a time-based event stream into intervals based

on a time;

identifying unique values for an attribute of the event

stream in an interval; and

determining a state of the attribute based on a past state,

past counts of unique values per interval, and a number
of unique values in a current interval, wherein state
indicates whether the attribute is an enumerated type or
a non-enumerated type.

20. The computer-readable storage medium of claim 19,
the method further comprises clearing historical data includ-
ing the past counts upon transitioning from a first state indi-
cating the attribute is an enumerated type to a second state
indicating the attribute is a non-enumerated type.

#* #* #* #* #*



